

AZ12000, AZ12001

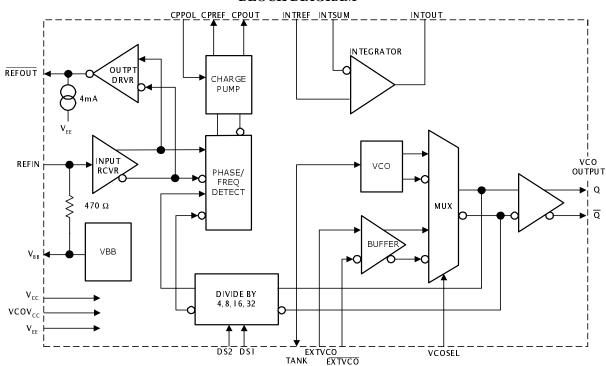
Phase-Locked Loop Clock Generator

FEATURES

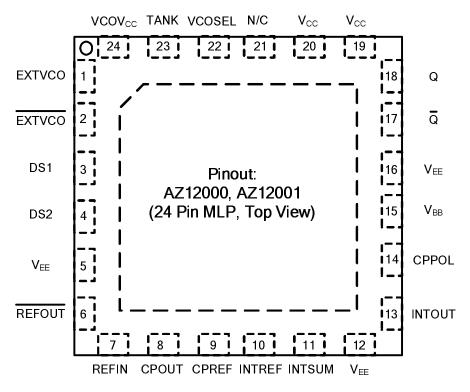
- PECL (AZ12000) or LVDS (AZ12001) Outputs
- Operating Range 3.0V to 5.5V
- Internal Crystal Oscillator Driver
- Internal Edge-Matching Phase/Frequency Detector
- Internal Charge-Pump and Integrator Amplifier
- Internal or External VCO
- Divide by 4, 8, 16, 32
- RF Bipolar Design for Low Phase Noise
- Available in a 4x4mm MLP Package

DESCRIPTION

PACKAGE AVAILABILITY


PACKAGE	PART NO.	MARKING	NOTES
MLP 24 (4x4)	AZ12000K	AZ12000	1,2
	71212000IX	<date code=""></date>	
MID $24(4.4)$	AZ12001K	AZ12001	1,2
MLP 24 (4x4)	AZ12001K	<date code=""></date>	
DIE	AZ12000XP	N/A	3
DIE	AZ12001XP	N/A	3

1 Add R1 at end of part number for 7 inch (1K parts), R2 for 13 inch (2.5K parts) Tape & Reel.


2 Date code format: "YY" for year followed by "WW" for week.

3 Waffle Pack

The AZ12000/AZ12001 contains all of the functional elements necessary to implement a Phase-Locked Loop for clock multiplication at frequencies up to 800 MHz. A reference crystal oscillator driver operates at frequencies up to 200 MHz providing support for 4 times multiplication. The dynamic properties of the PLL are under the control of the user through selection of the desired external components.

BLOCK DIAGRAM

Bottom Center pad may be left open or tied to $V_{\mbox{\scriptsize EE}}.$

Absolute Maximum	Ratings are those	values beyond	which device	life may be impaired.
Absolute Maximum	Ratings are those	values beyond	which ut vice	me may be impaired.

Symbol	Characteristic	Rating	Unit
V _{CC}	Power Supply $(V_{EE} = GND)$	0 to +6.0	Vdc
VI	Input Voltage $(V_{EE} = GND)$	0 to +6.0	Vdc
I _{OUT}	ECL/PECL Output Current — Continuous — Surge	40 80	mA
T _A	Operating Temperature Range	-40 to +85	°C
T _{STG}	Storage Temperature Range	-65 to +150	°C

AZ12000 FUNCTIONAL PIN DESCRIPTIONS

Pin No	Pin Name	Functional Description	Logic Level
	REFIN	Reference Crystal Resonator Input This pin includes an on-chip 470 Ω pull down resistor to V _{BB} . The input from the resonator circuit should be AC	
		coupled. Crystal Resonator Output Drive This pin is an inverted and amplified version	
		of the signal on the REFIN pin. The gain from REFIN to REFOUT is	
	REFOUT	approximately 20. The IC includes a 4 ma on-chip current source. If more	ECL/PECL
		current is needed, the REFOUT pin may be connected to V_{EE} through a resistor	
		to provide up to 8 ma additional current.	
		Charge Pump Reference Output The pin voltage is nominally 1.2 volts below	
	CPREF	V_{CC} . If an external integrator is used, CPREF should be connected to the	
		integrator reference input through a bias current cancellation network.	
		Charge Pump Output The charge pump output voltage is V(CPREF) ±0.3V	
	CPOUT	during a phase correction pulse. When there is no correction pulse the output	
		goes high impedance. If an external integrator is used, CPOUT should be	
		connected to the input integrator resistor.	
		Charge Pump Polarity Logic LOW on this pin causes CPOUT to go low when the VCO frequency is too low, and go high when the VCO frequency is	
		too high. Logic HIGH on this pin causes CPOUT to go low when the VCO	
	CPPOL	frequency is too high, and go high when the VCO frequency is too low. This	CMOS/TTL
	CITOL	pin should be LOW when the internal VCO is used.	compatible
		If this pin is left open it is pulled to the HIGH condition.	
	INTER	Integrator Reference Input This pin should be connected to CPREF through a	
	INTREF	bias current cancellation network	
	INTSUM	Integrator Summing Junction This pin is the summing junction for the	
		integrator amplifier	
	INTOUT	Integrator Output	
		Internal/External VCO Select Logic HIGH on this pin enables the internal	
	VCOCEI	VCO. Logic LOW on this pin disables the internal VCO and allows use of the	CMOS/TTL
	VCOSEL	EXTVCO inputs.	compatible
		If this pin is left open it is pulled to the HIGH condition.	
	TANK	VCO Tank The tank components connect between this pin and V_{CC} .	
	EXTVCO	External VCO Input The external VCO input pins should be driven	
	EXTVCO	differentially for best performance.	ECL/PECL
		Divide Select VCO divide ratios are selected as shown:	
		DS2 DS1 Ratio	
	DS2	LOW LOW ÷4	CMOS/TTL
	DS1	LOW HIGH ÷8	compatible
		HIGH LOW ÷16	
		HIGH HIGH ÷32	
		If the pins are left open they are pulled to the HIGH condition.	
	Q	Clock Output These pins are the main (multiplied) clock output.	ECL/PECL
	Q N/C	No Connect This nin is used during featers text. It must be left error	
	IN/C	No Connect This pin is used during factory test. It mist be left open. Reference Voltage Output This pin is used to bias the REFIN signal. It must	
	V_{BB}		
	V	be bypassed externally to the VEE pins with a 0.01 μF capacitor. Positive Supply +3.0 to +5.5 V for PECL mode, Ground for ECL mode.	
	V _{CC} VCOV _{CC}	VCO Positive Supply +3.0 to +5.5 V for PECL mode, Ground for ECL mode.	
		Negative Supply Ground for PECL mode, -3.0 to -5.5 V for ECL mode.	
	V_{EE}	regauve Supply Ground for PECL mode, -3.0 to -5.5 V for ECL mode.	

AZ12001 FUNCTIONAL PIN DESCRIPTIONS

Pin No	Pin Name	Functional Description	Logic Level
		Reference Crystal Resonator Input This pin includes an on-chip 470 Ω pull	~
	REFIN	down resistor to V_{BB} . The input from the resonator circuit should be AC	
		coupled.	
		Crystal Resonator Output Drive This pin is an inverted and amplified version	
		of the signal on the REFIN pin. The gain from REFIN to REFOUT is	
	REFOUT	approximately 20. The IC includes a 4 ma on-chip current source. If more	PECL
		current is needed, the REFOUT pin may be connected to V_{EE} through a resistor	
		to provide up to 8 ma additional current.	
		Charge Pump Reference Output The pin voltage is nominally 1.2 volts below	
	CPREF	V _{CC} . If an external integrator is used, CPREF should be connected to the	
		integrator reference input through a bias current cancellation network.	
		Charge Pump Output The charge pump output voltage is V(CPREF) ±0.3V	
	CPOUT	during a phase correction pulse. When there is no correction pulse the output	
	CPUUI	goes high impedance. If an external integrator is used, CPOUT should be	
		connected to the input integrator resistor.	
		Charge Pump Polarity Logic LOW on this pin causes CPOUT to go low	
		when the VCO frequency is too low, and go high when the VCO frequency is	
		too high. Logic HIGH on this pin causes CPOUT to go low when the VCO	CMOS/TTL
	CPPOL	frequency is too high, and go high when the VCO frequency is too low. This	compatible
		pin should be LOW when the internal VCO is used.	compatible
		If this pin is left open it is pulled to the HIGH condition.	
	INTREF	Integrator Reference Input This pin should be connected to CPREF through a	
	nunce	bias current cancellation network	
	INTSUM	Integrator Summing Junction This pin is the summing junction for the	
		integrator amplifier	
	INTOUT	Integrator Output	
		Internal/External VCO Select Logic HIGH on this pin enables the internal	
		VCO. Logic LOW on this pin disables the internal VCO and allows use of the	CMOS/TTL
	VCOSEL	EXTVCO inputs.	compatible
			eompariore
	THAN WE	If this pin is left open it is pulled to the HIGH condition.	
	TANK	VCO Tank The tank components connect between this pin and V_{CC} .	
	EXTVCO	External VCO Input The external VCO input pins should be driven	PECL
	EXTVCO	differentially for best performance.	
		Divide Select VCO divide ratios are selected as shown:	
	DGO	DS2 DS1 Ratio	
	DS2	LOW LOW ÷4	CMOS/TTL
	DS1	LOW HIGH +8	Compatible
		HIGH LOW ÷16	
		HIGH HIGH ÷32	
		If the pins are left open they are pulled to the HIGH condition.	
	Q	Clock Output These pins are the main (multiplied) clock output.	LVDS
	Q	No Connect This pip is used during for the state of It (1, 1, 6)	
	N/C	No Connect This pin is used during factory test. It must be left open.	
	V_{BB}	Reference Voltage Output This pin is used to bias the REFIN signal. It must	
		be bypassed externally to the VEE pins with a 0.01 μ F capacitor.	
	V _{CC}	Positive Supply +3.0 to +5.5 V	
	VCOV _{CC}	VCO Positive Supply +3.0 to +5.5 V	
	V _{EE}	Negative Supply Ground	

Symbol	Characteristic	-40)°C	0°C		25°C			85	Unit	
Symbol	Characteristic	Min	Max	Min	Max	Min	Тур	Max	Min	Max	Unit
V_{BB}	Reference Voltage	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.31	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V
R _{PD}	REFIN Pull-Down resistor to V_{BB}						470				Ω
I _{CS}	REFOUT Current Source						4.0				ma
V _{HCTL}	High level integrator output					V _{CC} -1.0					V
V _{LCTL}	Low level integrator output							V _{EE} +0.5			V
V _{OH}	Output HIGH Voltage ¹ Q Q	V _{CC} -1085	V _{CC} -880	V _{CC} -1025	V _{CC} -880	V _{CC} -1025	V _{CC} -955	V _{CC} -880	V _{CC} -1025	V _{CC} -880	mV
V _{OL}	Output LOW Voltage ¹ Q Q	V _{CC} -1830	V _{CC} -1555	V _{CC} -1810	V _{CC} -1620	V _{CC} -1810	V _{CC} -1705	V _{CC} -1620	V _{CC} -1810	V _{CC} -1620	mV
V _{IH}	Input HIGH Voltage, PECL/ECL EXTVCO EXTVCO	V _{CC} -1165	V _{CC} -880	V _{CC} -1165	V _{CC} -880	V _{CC} -1165		V _{CC} -880	V _{CC} -1165	V _{CC} -880	mV
V _{IL}	Input LOW Voltage, PECL/ECL EXTVCO EXTVCO	V _{CC} -1810	V _{CC} -1475	V _{CC} -1810	V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810	V _{CC} -1475	mV
V _{IH}	Input HIGH Voltage, TTL/CMOS CPPOL VCOSEL DS2 DS1	V _{EE} +2.0		V _{EE} +2.0		V _{EE} +2.0			V _{EE} +2.0		V
V _{IL}	Input HIGH Voltage, TTL/CMOS CPPOL VCOSEL DS2 DS1		V _{EE} +0.8		V _{EE} +0.8			V _{EE} +0.8		V _{EE} +0.8	V
I_{CC} (I_{EE})	Power Supply Current		55		58		45	58		60	mA

AZ12000 (PECL OUTPUT) DC CHARACTERISTICS ($V_{CC} = +3.0$ to +5.5 V, $V_{EE} = GND$)

1. Load is 50Ω to V_{CC}-2V

AZ12001 (LVDS OUTPUT) DC CHARACTERISTICS ($V_{CC} = +3.0$ to +5.5 V, $V_{EE} = GND$)

C-makel	Changeteristic	-40°C		0°	C		25°C		85	T Inc. 4	
Symbol	Characteristic	Min	Max	Min	Max	Min	Тур	Max	Min	Max	Unit
V _{BB}	Reference Voltage	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.31	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V
R _{PD}	REFIN Pull-Down resistor to V_{BB}						470				Ω
I _{CS}	REFOUT Current Source						4.0				ma
V _{HCTL}	High level integrator output					V _{CC} -1.0					V
V _{LCTL}	Low level integrator output							V _{EE} +0.5			V
V _{OH}	Output HIGH Voltage ¹ Q Q										mV
V _{OL}	Output LOW Voltage ¹ Q Q										mV
V _{IH}	Input HIGH Voltage, PECL/ECL EXTVCO EXTVCO	V _{CC} -1165	V _{CC} -880	V _{CC} -1165	V _{CC} -880	V _{CC} -1165		V _{CC} -880	V _{CC} -1165	V _{CC} -880	mV
V _{IL}	Input LOW Voltage, PECL/ECL EXTVCO EXTVCO	V _{CC} -1810	V _{CC} -1475	V _{CC} -1810	V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810	V _{CC} -1475	mV
V _{IH}	Input HIGH Voltage, TTL/CMOS CPPOL VCOSEL DS2 DS1	V _{EE} +2.0		V _{EE} +2.0		V _{EE} +2.0			V _{EE} +2.0		V
V _{IL}	Input HIGH Voltage, TTL/CMOS CPPOL VCOSEL DS2 DS1		V _{EE} +0.8		V _{EE} +0.8			V _{EE} +0.8		V _{EE} +0.8	V
$I_{\rm CC} \left(I_{\rm EE} \right)$	Power Supply Current				60	İ		60		60	mA

1. 100Ω between outputs

AZ 12000 (PECL OUTPUT) AC CHARACTERISTICS ($V_{CC} = +3.0$ to +5.5 V, $V_{EE} = GND$)

Symbol	Characteristic	-40°C			25°C				Unit		
	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Oint
A _{V1}	Gain, REFIN to REFOUT					20					V/V
Zo	Output Impedance, REFOUT					TBD					Ω
A _{PD}	Phase Detector Gain					20.3					radians/V
\mathbf{f}_{VCO}	VCO frequency (Internal or External)						800				MHz
t_r / t_f	Output Rise & Fall Times (20% - 80%) Q Q					120 120					ps

AZ12001 (LVDS OUTPUT) AC CHARACTERISTICS ($V_{CC} = +3.0$ to +5.5 V, $V_{EE} = GND$)

Symbol	Characteristic	-40°C			25°C					Unit	
	Chai acteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Umt
A _{V1}	Gain, REFIN to REFOUT					20					V/V
Zo	Output Impedance, REFOUT					TBD					Ω
A _{PD}	Phase Detector Gain					20.3					Radians/V
\mathbf{f}_{VCO}	VCO frequency (Internal or External)						800				MHz
t_r / t_f	Output Rise & Fall Times (20% - 80%) Q Q										ps

Internal Reference Oscillator

The PLL reference can be generated either with an internal oscillator or with an external source. In either case, the input is the REFIN pin. This should be AC coupled since the input is internally biased to V_{BB} . The REFOUT pin should be left open when an external reference is used.

The exact topology of the crystal circuit will vary based on the resonant mode of the crystal. The circuit shown is for a series resonant crystal. The AC gain between the REFIN and REFOUT pins is approximately 20. This value is sufficient to overcome crystal matching network losses without phase noise degradation caused by an excessive drive level. An internal current source on REFOUT eliminates the need for an external load resistor.

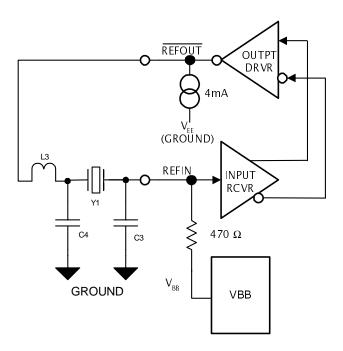


Figure 1 Reference Oscillator

Loop Filter Design

The combination of the phase detector, amplifier, VCO and divider form a second-order phase-locked loop. Proper selection of the loop components is important to obtain stable, low jitter operation.

The loop bandwidth (or natural frequency, ω_n) and damping factor (ζ) are the two major driving forces that define the loop's response to a disturbance. The value of ζ is typically 0.7 to ensure the fastest step response consistent with no ringing. However in many oscillator application ζ may be 3 or higher to provide further phase noise reduction. ω_n is chosen as a compromise between settling time, VCO jitter and reference feedthrough. These values can be computed by the following equations:

$$\omega_n = \frac{1}{N} \sqrt{\frac{K_{\phi} K_{VCO}}{\tau_1}}$$
$$\zeta = \frac{\tau_2 \omega_n}{2}$$
$$\tau_1 = R_1 C_1$$
$$\tau_2 = R_2 C_1$$

 K_{ϕ} = Phase Detector Gain (20.3 radians/V)

 K_{VCO} = VCO Gain (radians/sec/volt)

N = Frequency Divisor value (4,8, 16 or 32)

The component definitions are shown in the figure below. R3 should be equal to R1 to minimize integrator offsets.

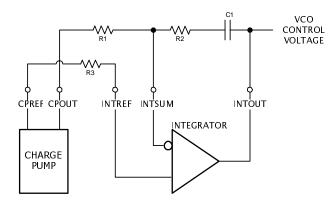


Figure 2 Charge Pump and Integrator

Internal VCO

The internal VCO is designed for reliable, low jitter operation up to 800 MHz. It operates as a single terminal negative impedance type circuit.

The tank circuit should have a minimum Q of 12 for reliable operation. The series combination of CV and C1 resonate with L1 to set the operating frequency. The VCO control voltage is isolated through an inductor or resistor and changes the varactor capacitance based on that control voltage. Note that the CPPOL pin should be tied high for internal VCO operation since the tank frequency decreases with increasing control voltage.

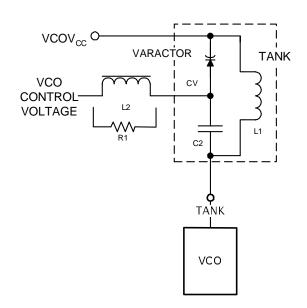


Figure 3 Internal VCO with Tank

External VCO

When VCOSEL is high, the internal VCO is disabled and the EXTVCO, EXTVCO pair is enabled. That input pair is sine wave and PECL compatible.

The CPPOL pin sets the frequency slope polarity based on the operation of the external VCO. When CPPOL is low, the charge pump generates pulses for an integrator and loop filter assuming the VCO frequency goes lower as the integrator output voltage increases. When CPPOL is high, pulses are generated for a VCO in which the frequency goes higher as the integrator output voltage increases.

Application Circuit

A typical application circuit is shown in Figure 4. This drawing shows use of the internal reference oscillator and internal VCO.

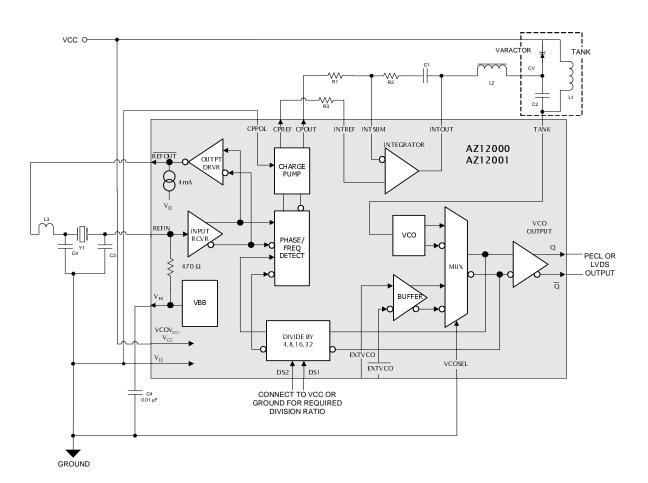
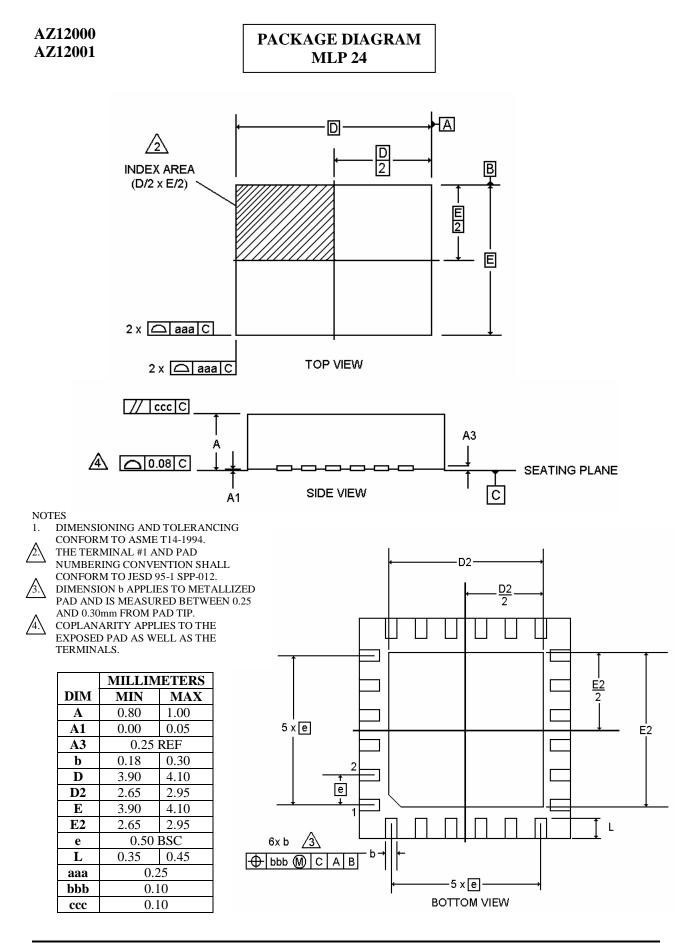



Figure 4. Typical Application with Crystal Reference and Internal VCO

Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part.